Monolithic Integration of GaN Transistors for Higher Efficiency and Power Density in DC-DC Converters

نویسندگان

  • David Reusch
  • Johan Strydom
  • Alex Lidow
چکیده

Power converters are constantly trending towards higher output power, higher efficiency, and higher power density. To provide improved performance better power devices are required. For silicon (Si) power devices, the gains in performance have slowed as the technology has matured and approaches its theoretical limits [1]. Gallium nitride (GaN) devices have emerged as a possible replacement for silicon devices in various power conversion applications and as an enabler of new applications not previously possible [1]-[4]. In this paper we will discuss the latest eGaN FETs developments, including a major improvement with the latest generation of discrete devices and introduce a new family of monolithic half bridge ICs offering unmatched high frequency performance. These new families of eGaN FETs are widening the performance gap with the aging power MOSFET in high frequency power conversion by providing significant gains in key switching figures of merit, continued reductions of performance limiting in-circuit parasitics, and improved thermal performance. 1. Rapid Improvements in GaN Performance The GaN technology journey is just beginning, and we are still far from theoretical performance limits [1]. It is quite reasonable to expect a rapid rate of improvement reminiscent of Moore’s Law, which predicted the growth of microprocessor technology – doubling of product performance every two to four years for at least the next decade. The latest generation (circa 2014) of discrete high current eGaN FET power transistors demonstrates over a two-fold reduction in hard switching figure of merit (FOMHS) [5] over the previous generation (circa 2011), as shown on the left in figure 1. The latest generation of eGaN FETs also have over a two-fold reduction in on-resistance compared to their predecessor, increasing the current capability of GaN transistors [5]. The latest generation family of eGaN FETs, when compared to the state-of-art Si power MOSFETs, reduces FOMHS by 4.8 times, 8 times, and 5 times respectively for 40 V, 100V, and 200 V devices as plotted on a log scale shown on the right in figure 1. Fig.1. Hard switching FOMHS comparison of generation 2 (circa 2011) and generation 4 (circa 2014) high current eGaN FETs (left) and eGaN FETs and state-of-the-art Si MOSFETs (right) for drain-tosource voltages at half of the rated voltage, and a drain-to-source current of 20 A 0 5 10 15 20 25 30 35 40 45 50 0 50 100 150 200 250 F O M H S = (Q G D + Q G S 2 )· R D S (o n ) (p C ·Ω ) Drain-to-Source Voltage (V) 1.4x 2.4x 2.4x eGaN FETs circa 2011 eGaN FETs circa 2014 1 10 100 0 50 100 150 200 250 F O M H S = (Q G D + Q G S 2 )· R D S (o n ) (p C ·Ω ) Drain-to-Source Voltage (V) EPC Gen 4

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of New Transformerless dc-dc Converter With High Voltage Gain

In some industries applications such as fuel cells, we must use a high voltage gain dc-dc converters for increasing voltage, but, the conventional converters cannot provide the high voltage gain with increasing duty cycle and the converters efficiency is limited by the equivalent series resistances. For this reason, in this paper, a single switch transformerless high step-up dc-dc converter wit...

متن کامل

A High Efficiency Low-Voltage Soft Switching DC–DC Converter for Portable Applications

This paper presents a novel control method to improve the efficiency of low-voltage DC-DC converters at light loads. Pulse Width Modulation (PWM) converters have poor efficiencies at light loads, while pulse frequency modulation (PFM) control is more efficient for the same cases. Switching losses constitute a major portion of the total power loss at light loads. To decrease the switching losses...

متن کامل

Hybrid Z-Source DC-DC Converter with ZVZCS and Power Transformer Resetting: Design, Modeling, and Fabrication

This paper introduces a novel two transistors forward topology employing a z-source to achieve ZVZCS and power transformer resetting for various applications. Comparing with the forward converter, this topology has the advantage of displaying ZCS condition with an added Z-Source and no additional switches when the switches turn on, and that ZVS condition happens when the switches turn off. Duty...

متن کامل

An Interleaved Configuration of Modified KY Converter with High Conversion Ratio for Renewable Energy Applications; Design, Analysis and Implementation

In this paper, a new high efficiency, high step-up, non-isolated, interleaved DC-DC converter for renewable energy applications is presented. In the suggested topology, two modified step-up KY converters are interleaved to obtain a high conversion ratio without the use of coupled inductors. In comparison with the conventional interleaved DC-DC converters such as boost, buck-boost, SEPIC, ZETA a...

متن کامل

Passivity-Based Control of the DC-DC Buck Converters in High-Power Applications

In this paper, a novel approach for control of the DC-DC buck converter in high-power and low-voltage applications is proposed. Designed method is developed according to passivity based controller which is able to stabilize output voltage in a wide range of operation. It is clear that in high-power applications, parasitic elements of the converter may become comparable with load value and hence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015